Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
2.
J Infect Dis ; 223(9): 1544-1554, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1099601

ABSTRACT

BACKGROUND: Activins are members of the transforming growth factor-ß superfamily implicated in the pathogenesis of several immunoinflammatory disorders. Based on our previous studies demonstrating that overexpression of activin-A in murine lung causes pathology sharing key features of coronavirus disease 2019 (COVID-19), we hypothesized that activins and their natural inhibitor follistatin might be particularly relevant to COVID-19 pathophysiology. METHODS: Activin-A, activin-B, and follistatin were retrospectively analyzed in 574 serum samples from 263 COVID-19 patients hospitalized in 3 independent centers, and compared with demographic, clinical, and laboratory parameters. Optimal scaling with ridge regression was used to screen variables and establish a prediction model. RESULT: The activin/follistatin axis was significantly deregulated during the course of COVID-19, correlated with severity and independently associated with mortality. FACT-CLINYCoD, a scoring system incorporating follistatin, activin-A, activin-B, C-reactive protein, lactate dehydrogenase, intensive care unit admission, neutrophil/lymphocyte ratio, age, comorbidities, and D-dimers, efficiently predicted fatal outcome (area under the curve [AUC], 0.951; 95% confidence interval, .919-.983; P <10-6). Two validation cohorts indicated similar AUC values. CONCLUSIONS: This study demonstrates a link between activin/follistatin axis and COVID-19 mortality and introduces FACT-CLINYCoD, a novel pathophysiology-based tool that allows dynamic prediction of disease outcome, supporting clinical decision making.


Subject(s)
Activins/blood , COVID-19/blood , COVID-19/mortality , Follistatin/blood , SARS-CoV-2 , Aged , Biomarkers , COVID-19/physiopathology , Cohort Studies , Decision Support Techniques , Female , Greece/epidemiology , Hospital Mortality , Humans , Male , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL